If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-30x-18=0
a = 4; b = -30; c = -18;
Δ = b2-4ac
Δ = -302-4·4·(-18)
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{33}}{2*4}=\frac{30-6\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{33}}{2*4}=\frac{30+6\sqrt{33}}{8} $
| 3(-3n+6)+7=6n-7(1+n) | | ((-4))2=(t+4)2+32 | | (√x+2√x)+(√x+3√x)=0 | | K*Y+3x=8 | | 5(m-7)+4=14 | | 25(c-55)=23,750 | | K•Y+3x=8 | | 4*((16+8*x)/4)-8*x=16 | | f(3)=-9+3 | | X2+8x=-15 | | (7+x)/(8-x)=-2/3 | | 5/k-6=3 | | 1/2(12n-4)=14-14n | | 6z-15=z+5 | | 11x-44=77 | | 9÷n=-63 | | 5a-6=-9 | | f(2)=-4+3 | | 7+x/8-x=-2/3 | | f2=-4+3 | | .125x+3=9 | | X^2+11x-232=0 | | 8x2+16=0 | | f(1)=-1+3 | | 9x+8+9x=37 | | 20x-20+5x-10=4x+20-20 | | (2*x)/3+16=0 | | x-2/3-2x-1/6=x/9-2 | | 14+x/9+x=9/4 | | 6d−2/11=2d−2/13 | | x/6=-28 | | 2x+x+3+x=75 |